

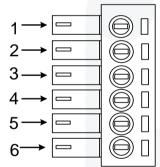
2DM2280 DRIVER DIGITAL DE MOTOR DE PASSO

1. Visão Geral

O driver 2DM2280 é um driver digital de motor de passo de duas fases baseada na tecnologia DSP. O 2DM2280 tem um avançado controle de algoritimos no qual pode trazer um nível único de suavidade no sistema, proporcionando um torque otimizado e uma inestabilidade de intervalo médio. A resolução de micropasos e a corrente para cada motor pode ser configurada de acordo com cada aplicação. O controle de algoritimos de multi-passo pode fazer o motor de ter uma performance de sistema suave. O controle de algoritimos de compensação de torque melhora o torque do motor em altas velocidades. O controle de algoritimo de autoconhecimento do motor e a tecnologia de autoconfiguração dos parâmetros oferecem respostas otimizadas com diferentes motores e fáceis de usar. O algoritimo de controle de suavidade pode aumentar a aceleração e desaceleração do motor. Essas características fazem com que o 2DM2280 seja a solução ideal para as aplicações.

2. Características

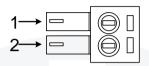
- ◆ Parâmetro de autoconfiguração e autoconhecimento do motor.
- ◆ Controle de multi-passo interno
- ◆ Baixo ruído, baixo aquecimento e movimentos suaves.
- ◆ Compensação de torque em alta velocidade
- ◆ Tecnologia de controle de corrente variável, alta eficiência atual
- Controle de aceleração e desaceleração interna, ótima melhoria na suavidade de partida e parada do motor.



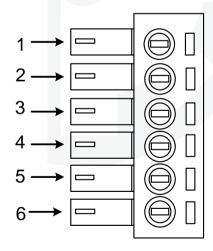
- ◆ Suporta modos PUL/DIR e CW/CCW
- ◆ Armazenamento da posição do motor
- ◆ Entradas opticamente isoladas e compatíveis com 5V e 24V
- Micropasso definido pelo usuário
- Resolução de micropasso e corrente de saída programáveis
- ◆ Proteção contra sobrecorrente, sobretensão e baixa tensão
- ◆ A luz verde significa que o driver funcionando corretamente. Luz vermelha significa que o driver entrou em proteção.

3. Introdução

3.1 Controle de sinal de entrada



Pino	Simbologia	Nome	Observações
1	DIR-	Sinal Direção -	Compatível com
2	DIR+	Sinal Direção +	5V ou 24V
3	PLS-	Sinal de Pulso -	Compatível com
4	PLS+	Sinal de Pulso +	5V ou 24V
5	ENA-	Sinal Habilita -	Compatível com
6	ENA+	Sinal Habilita +	5V ou 24V



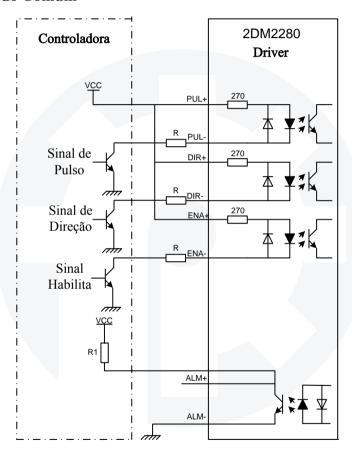
3.2 Pinos de saída ALM

Pino	Simbologia	Nome	Observações
1	ALM+	Sinal de saída alarme +]
2	ALM-	Sinal de saída alarme -	★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★

3.3 Pinos de interface de energia

Pino	Identificação	Simbol.	Nome	Observações
1	Pino de entrada	A+	Fase A+	Fase A do
2	- Conexão das	A-	Fase A-	motor
3	fases do motor	B+	Fase B+	Fase B do
4	lases do illotor	B-	Fase B-	motor
5	Pinos de	AC1	80V - 240V AC	
6	entrada de energia	AC2		

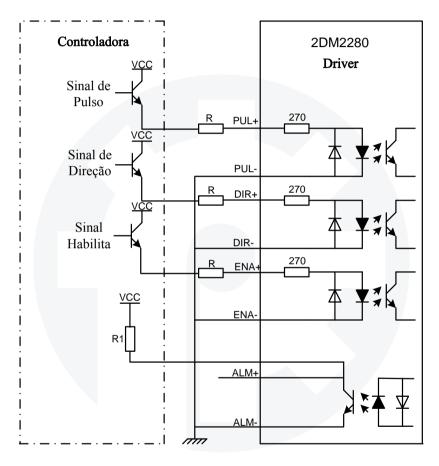
4. Índice tecnologico


Tensão de entrada		80~240VAC	
Corrente de saída		8A	
Máx. Frequência de pulso		200KHz	
Taxa de co	omunicação	57.6Kbps	
Proteção		 Pico de sobrecorrente 15A±10% Valor de sobretensão 350V 	
Dimensões (mm)		$192\times127\times85$	
Peso		Aproximadamente 1500g	
	Meio Ambiente	Evitar poeira, óleo e gases corrosivos	
F '6 ~	Temperatura de operação	+70°C Max	
Especificações ambienais	Temperatura de armazenamento	-20°C ~+80°C	
	Humidade	40~90%RH	
	Método de resfriamento	Refrigeração natural ou ventilação forçada	

5. Conexões de controle de sinal

5.1 Anodo Comum

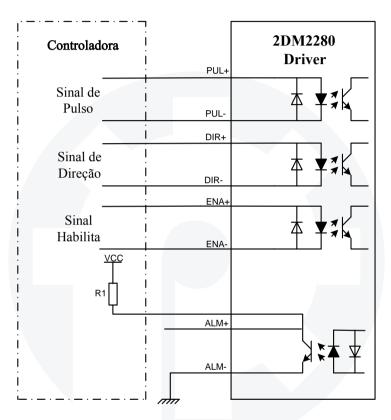
Observações:


VCC é compatível com 5V ou 24V;

 $R(3\sim5K)$ deve ser conectado ao terminal de sinal de controle.

5.2 Catodo comum

Observações:

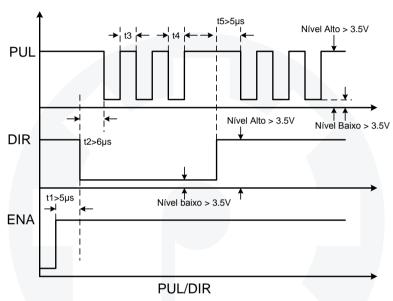

VCC é compatível com 5V ou 24V;

R(3~5K) deve ser conectado ao terminal de sinal de controle.

5.3 Sinal Diferencial

Observações:

VCC é compatível com 5V ou 24V;


R(3~5K) deve ser conectado ao terminal de sinal de controle.

5.5 Sequência de gráfico de controle de sinais

Para evitar algumas falhas operacionais e desvios, PUL, DIR respeitar algumas regras conforme diagrama abaixo:

Observações:

- a. t1: ENA deve estar a frente de DIR por pelo menos 5µs. Normalmente, ENA+ e ENA- são NC (Não conectados).
- b. t2: DIR deve estar a frente do degrau ativo de PUL por pelo menos 6μs para garantir a direção correta
- c. t3: A largura de pulso não deve ser menor que 2.5µs;
- d. t4: Largura do nível baixo não deve ser menor que 2.5µs.

6. Configuração do DIP Switch

6.1 Configuração de corrente

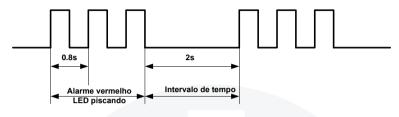
A configuração de corrente pode ser vista na tabela abaixo.

Chave DIP Corrente	SW1	SW2	SW3
Default	0	0	0
2.2A	1	0	0
3.2A	0	1	0
4.5A	1	1	0
5.2A	0	0	1
6.3A	1	0	1
7.2A	0	1	1
8.2A	1	1	1

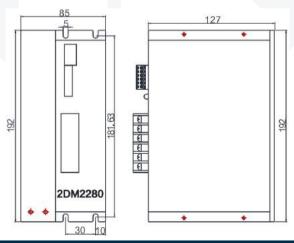
6.2 Configuração de corrente com o motor parado

SW4 é usado para configurar a corrente quando o motor está parado. "OFF" significa que a corrente de motor parado é configurada pra ser a metade da corrente dinâmica configurada. Os detalhes podem ser visto na décima seção. "ON" significa que a corrente de motor parado é a mesma da corrente dinâmica configurada.

6.3 Configuração de micropasso


A configuração de micropasso é feita de acordo com a tabela abaixo..

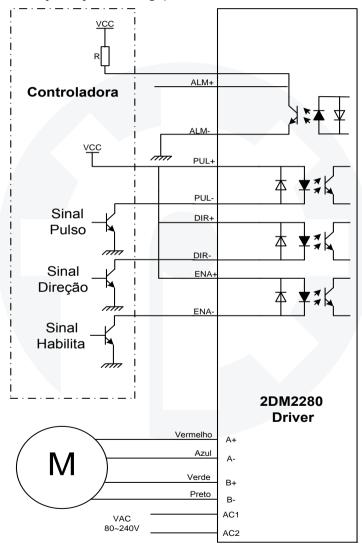
Chave DIP Corrente	SW5	SW6	SW7	SW8
Default	1	1	1	1
400	0	1	1	1
800	1	0	1	1
1600	0	0	1	1
3200	1	1	0	1
6400	0	1	0	1
12800	1	0	0	1
25600	0	0	0	1
1000	1	1	1	0
2000	0	1	1	0
4000	1	0	1	0
5000	0	0	1	0
8000	1	1	0	0
10000	0	1	0	0
20000	1	0	0	0
25000	0	0	0	0



7. Alarme de erro e frequência de cintilação do LED

Freq. de Cintilação	Descrição do erro	
1	Erro ocorre quando a corrrente da bobina do motor excede o limite de corrente do driver.	
2	Erro de tensão de referência no driver.	
3	Erro de carregamento de programa no driver	
4	Erro ocorre quando a tensão de entrada é maior do que o limite de tensão do driver.	

8. Dimensões de instalação (mm)



9. Conexão típica

Abaixo, o esquema padrão de ligação do 2DM2280.

10. Métodos de processos para erros e problemas comuns

Erros

10.1 Luz de alimentação desligada

■ Sem tensão na entrada, favor checar o circuito fornecedor de energia. A alimentação pode estar baixa ou desligada.

10.2 Luz vermelha de alarme ligada

- Ter certeza se o motor está conectado com o driver.
- O driver está com a tensão mais alta ou mais baixa que a tensão de trabalho. Favor, aumente ou diminua a tensão de fornecimento.

10.3 Motor não funciona com pulso

- Ter certeza se o cabo de pulso está conectado da forma correta.
- Ter certeza que o tipo de entrada de pulso corresponde ao tipo real de entrada de pulso.
- O driver está desabilitado

